Andrew's Blog     All posts     Feed     About

Markov of Chain: Automating Weird Sun tweets

Let’s use python to train a Markov chain generator using all the tweets from a certain list of users, say this one. We’ll use the following libraries.

from functional import seq
import markovify
import re
import tweepy
import unidecode

To use the Twitter API, we need to authenticate ourselves. Register for your personal keys at and then create a config.json file that looks like this

  "consumer_key":    "...",
  "consumer_secret": "...",
  "access_key":      "...",
  "access_secret":   "..."

Now we can initialize the Twitter API provided by tweepy.

config = seq.json('config.json').dict()
auth = tweepy.OAuthHandler(
    config['consumer_key'], config['consumer_secret'])
auth.set_access_token(config['access_key'], config['access_secret'])
api = tweepy.API(auth)

First we write the following function (based on this gist) which returns the most recent tweets of a given user. The API limits us to at most 3240 tweets per user.

def get_user_tweets(screen_name):
    alltweets = []

    #  200 is the maximum allowed count
    # 'extended' means return full unabridged tweet contents
    new_tweets = api.user_timeline(screen_name=screen_name, count=200,


    # save the id of the oldest tweet less one
    oldest_id = alltweets[-1].id - 1

    # keep grabbing tweets until there are no tweets left to grab
    while len(new_tweets) > 0:
        # since we're grabbing 200 at a time, we use `max_id` to
        #   ask for a certain range of tweets
        new_tweets = api.user_timeline(
                screen_name = screen_name, count=200,
                tweet_mode='extended', max_id=oldest_id)


        #update the id of the oldest tweet less one
        oldest_id = alltweets[-1].id - 1

        print("...{} tweets downloaded so far".format(len(alltweets)))

    # put each tweet on a single line
    tweet_texts = [re.sub(r'\s*\n+\s*', ' ', tweet.full_text)
                   for tweet in alltweets]

    return tweet_texts

The other interaction with Twitter we need to perform is get all users in a list. We’ll write a function that fetches the usernames and calls get_user_tweets on each:

def get_list_tweets(screen_name, list_name):
    params: `screen_name` is the username of the owner of the list,
    `list_name` is the name of the list found in the URL

    # get list of all users in list
    user_names = []
    for user in tweepy.Cursor(

    # for each user, get their tweets
    list_tweets = []
    for user_name in user_names:
        list_tweets += get_user_tweets(user_name)
    print('Found {1} tweets from @{2}.'
        .format(len(list_tweets), user_name))
    return list_tweets

Let’s run get_list_tweets and save the output to a file.

tweets = get_list_tweets('Grognor', 'weird-sun-twitter')

with open('data/tweetdump.txt', 'w') as f:

With all of the raw data saved, we’re done with the Twitter API and we can process the data and auto-generate tweets offline. Assuming the file tweetdump.txt has a set of tweets, one per line, we load them as a list of strings tweets.

tweets = open('data/tweetdump.txt').readlines()

Some processing needs to be done in order to get high quality text from the tweets. The next function process_tweet is called on each one.

def process_tweet(tweet):
    # convert to ASCII
    tweet = unidecode.unidecode(tweet)
    # remove URLs
    tweet = re.sub(r'http\S+', '', tweet)
    # remove mentions
    tweet = re.sub(r'@\S+', '', tweet)

    tweet = tweet.strip()

    # append terminal punctuation if absent
    if len(tweet) > 0:
        last_char = tweet[-1]
        if last_char not in '.!?':
            tweet += '.'

    return tweet

processed_tweets = [ process_tweet(tweet) for tweet in tweets ]

And we remove any tweets that aren’t useful.

def is_excluded(tweet):
    ex = False
    # no RTs
    ex = ex or bool(re.match(r'^RT', tweet))
    # remove whitespace-only tweets
    ex = ex or bool(re.match(r'^\s*$', tweet))
    return ex

good_tweets = [ tweet for tweet in processed_tweets
               if not is_excluded(tweet) ]

We save the fully processed tweets for easy access later.

with open('data/processed_tweets.txt', 'w') as f:

The markovify library lets us train, and generate from, a Markov chain very easily. Just load the training text and set a state size.

text = open('data/processed_tweets.txt').read()

text_model = markovify.Text(text, state_size=3)

for x in range(5):
    print('* ' + text_model.make_short_sentence(140))

Some favorites:

* * *